Monodisperse mesoporous anatase beads as high performance and safer anodes for lithium ion batteries.
نویسندگان
چکیده
To achieve high efficiency lithium ion batteries (LIBs), an effective active material is important. In this regard, monodisperse mesoporous titania beads (MMTBs) featuring well interconnected nanoparticles were synthesised, and their mesoporous properties were tuned to study how these affect the electrochemical performance in LIBs. Two pore diameters of 15 and 25 nm, three bead diameters of 360, 800 and 2100 nm, and various annealing temperatures (from 300 to 650 °C) were investigated. The electrochemical results showed that while the pore size does not significantly influence the electrochemical behaviour, the specific surface area and the nanocrystal size affect the performance. Also, there is an optimum annealing temperature that enhances electron transfer across the titania bead structure. The carbon content employed in the electrode was varied, showing that the bead diameter strongly influences the minimal content of the conductive carbon required to fabricate the electrode. As a general rule, the smaller the bead diameter, the more carbon was required in the electrode. A large energy capacity and high current rate performance were achieved on the MMTBs featuring high surface area, nano-sized anatase crystals and well-sintered connections between the nanocrystals. The high stability of these mesoporous structures was demonstrated by charge/discharge cycling up to 500 cycles. Devices constructed with the MMTBs retained more than 80% of the initial capacity, indicating an excellent performance.
منابع مشابه
Improved Mechanical and Electrochemical Properties of Artificial Graphite Anode Using Water-Based Binders in Lithium-Ion Batteries
In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper c...
متن کاملNanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries.
Anatase TiO2 nanocrystals were successfully employed as anodes for rechargeable Na-ion batteries for the first time. The mesoporous electrodes exhibited a highly stable reversible charge storage capacity of ~150 mA h g(-1) over 100 cycles, and were able to withstand high rate cycling, fully recovering this capacity after being cycled at rates as high as 2 A g(-1).
متن کاملSuperior electrochemical performance and structure evolution of mesoporous Fe2O3 anodes for lithium-ion batteries
ont matter & 2013 0.1016/j.nanoen.2 thor. Tel.: +1 301 uthor. Tel.: +1 30 : [email protected] (M . Wang). ntributed equally Abstract Mesoporous Fe2O3 spherical particles with amorphous or crystalline structure were prepared at different temperatures using aerosol spray pyrolysis. The crystalline Fe2O3 (C-Fe2O3) anodes pyrolysized at 800 1C show better electrochemical performance than the amorphous Fe...
متن کاملConductive Additive for Si/Mesoporous Carbon Anode for Li-Ion Batteries: Commercial Graphite vs Super C65 Arlavinda Rezqita
Silicon is a promising candidate for anodes in lithium-ion batteries (LIB) due to its high theoretical capacity. However, Si has low electrical conductivity (theoretical: 6.7 x 10 S cm). Proper conductive additive is needed in order to improve the electrical conductivity of Si-based anodes. Here we focus on applying two commercial conductive addictives: graphite and carbon black Super C65 for s...
متن کاملNew nanostructured Li2S/silicon rechargeable battery with high specific energy.
Rechargeable lithium ion batteries are important energy storage devices; however, the specific energy of existing lithium ion batteries is still insufficient for many applications due to the limited specific charge capacity of the electrode materials. The recent development of sulfur/mesoporous carbon nanocomposite cathodes represents a particularly exciting advance, but in full battery cells, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 42 شماره
صفحات -
تاریخ انتشار 2015